Package: MHTrajectoryR 1.0.1

MHTrajectoryR: Bayesian Model Selection in Logistic Regression for the Detection of Adverse Drug Reactions

Spontaneous adverse event reports have a high potential for detecting adverse drug reactions. However, due to their dimension, the analysis of such databases requires statistical methods. We propose to use a logistic regression whose sparsity is viewed as a model selection challenge. Since the model space is huge, a Metropolis-Hastings algorithm carries out the model selection by maximizing the BIC criterion.

Authors:Matthieu Marbac and Mohammed Sedki

MHTrajectoryR_1.0.1.tar.gz
MHTrajectoryR_1.0.1.zip(r-4.5)MHTrajectoryR_1.0.1.zip(r-4.4)MHTrajectoryR_1.0.1.zip(r-4.3)
MHTrajectoryR_1.0.1.tgz(r-4.5-any)MHTrajectoryR_1.0.1.tgz(r-4.4-any)MHTrajectoryR_1.0.1.tgz(r-4.3-any)
MHTrajectoryR_1.0.1.tar.gz(r-4.5-noble)MHTrajectoryR_1.0.1.tar.gz(r-4.4-noble)
MHTrajectoryR_1.0.1.tgz(r-4.4-emscripten)MHTrajectoryR_1.0.1.tgz(r-4.3-emscripten)
MHTrajectoryR.pdf |MHTrajectoryR.html
MHTrajectoryR/json (API)

# Install 'MHTrajectoryR' in R:
install.packages('MHTrajectoryR', repos = c('https://masedki.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 5 scripts 145 downloads 1 exports 4 dependencies

Last updated 9 years agofrom:24f5a76203. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 20 2025
R-4.5-winOKMar 20 2025
R-4.5-macOKMar 20 2025
R-4.5-linuxOKMar 20 2025
R-4.4-winOKMar 20 2025
R-4.4-macOKMar 20 2025
R-4.4-linuxOKMar 20 2025
R-4.3-winOKMar 20 2025
R-4.3-macOKMar 20 2025

Exports:Analyze_oneAE

Dependencies:latticeMatrixmgcvnlme